翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

BRST cohomology : ウィキペディア英語版
BRST quantization
In theoretical physics, BRST quantization (where the ''BRST'' refers to Becchi, Rouet, Stora and Tyutin) denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.
The BRST global supersymmetry introduced in the mid-1970s was quickly understood to rationalize the introduction of these Faddeev–Popov ghosts and their exclusion from "physical" asymptotic states when performing QFT calculations. Crucially, this symmetry of the path integral is preserved in loop order, and thus prevents introduction of counterterms which might spoil renormalizability of gauge theories. Work by other authors a few years later related the BRST operator to the existence of a rigorous alternative to path integrals when quantizing a gauge theory.
Only in the late 1980s, when QFT was reformulated in fiber bundle language for application to problems in the topology of low-dimensional manifolds, did it become apparent that the BRST "transformation" is fundamentally geometrical in character. In this light, "BRST quantization" becomes more than an alternate way to arrive at anomaly-cancelling ghosts. It is a different perspective on what the ghost fields represent, why the Faddeev–Popov method works, and how it is related to the use of Hamiltonian mechanics to construct a perturbative framework. The relationship between gauge invariance and "BRST invariance" forces the choice of a Hamiltonian system whose states are composed of "particles" according to the rules familiar from the canonical quantization formalism. This esoteric consistency condition therefore comes quite close to explaining how quanta and fermions arise in physics to begin with.
In certain cases, notably gravity and supergravity, BRST must be superseded by a more general formalism, the Batalin–Vilkovisky formalism.
== Technical summary ==
BRST quantization (or the BRST formalism) is a differential geometric approach to performing consistent, anomaly-free perturbative calculations in a non-abelian gauge theory. The analytical form of the BRST "transformation" and its relevance to renormalization and anomaly cancellation were described by Carlo Maria Becchi, :de:Alain Rouet, and Raymond Stora in a series of papers culminating in the 1976 "Renormalization of gauge theories". The equivalent transformation and many of its properties were independently discovered by Igor Viktorovich Tyutin. Its significance for rigorous canonical quantization of a Yang–Mills theory and its correct application to the Fock space of instantaneous field configurations were elucidated by Kugo Taichiro and Ojima Izumi. Later work by many authors, notably Thomas Schücker and Edward Witten, has clarified the geometric significance of the BRST operator and related fields and emphasized its importance to topological quantum field theory and string theory.
In the BRST approach, one selects a perturbation-friendly gauge fixing procedure for the action principle of a gauge theory using the differential geometry of the gauge bundle on which the field theory lives. One then quantizes the theory to obtain a Hamiltonian system in the interaction picture in such a way that the "unphysical" fields introduced by the gauge fixing procedure resolve gauge anomalies without appearing in the asymptotic states of the theory. The result is a set of Feynman rules for use in a Dyson series perturbative expansion of the S-matrix which guarantee that it is unitary and renormalizable at each loop order—in short, a coherent approximation technique for making physical predictions about the results of scattering experiments.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「BRST quantization」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.